Tollaust Pty Ltd

Lane Cove Tunnel

CO In Tunnel Air Quality Monitoring

Validated Report

1st October 2016 – 31st October 2016

Report No.: DAT11266
Report issue date: 07/11/2016
Maintenance contract: MC1072

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.
Lane Cove Tunnel & Military Road E-Ramp

Report No: DAT11266

Tollaust Pty Ltd

<table>
<thead>
<tr>
<th>Customer Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Contact name</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Email</td>
</tr>
<tr>
<td>Phone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revision History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Report by: David Ding

Approved Signatory: Jon Alexander
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Details</td>
<td>2</td>
</tr>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>List of Figures</td>
<td>4</td>
</tr>
<tr>
<td>List of Tables</td>
<td>4</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>5</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.0 Monitoring and Data Collection</td>
<td>6</td>
</tr>
<tr>
<td>2.1. Siting Details</td>
<td>6</td>
</tr>
<tr>
<td>2.2. Monitored Parameters</td>
<td>9</td>
</tr>
<tr>
<td>2.3. Data Collection Methods</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1. Compliance with Standards</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2. Data Acquisition</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3. Data Validation</td>
<td>11</td>
</tr>
<tr>
<td>2.3.4. Reporting</td>
<td>11</td>
</tr>
<tr>
<td>3.0 Air Quality Goals</td>
<td>12</td>
</tr>
<tr>
<td>4.0 Calibrations and Maintenance</td>
<td>13</td>
</tr>
<tr>
<td>4.1. Units and Uncertainties</td>
<td>13</td>
</tr>
<tr>
<td>5.0 Results</td>
<td>14</td>
</tr>
<tr>
<td>5.1. Data Capture</td>
<td>14</td>
</tr>
<tr>
<td>5.2. Air Quality Summary</td>
<td>16</td>
</tr>
<tr>
<td>5.3. Graphic Representations</td>
<td>17</td>
</tr>
<tr>
<td>Report Summary</td>
<td>20</td>
</tr>
<tr>
<td>Appendix 1 - Definitions & Abbreviations</td>
<td>21</td>
</tr>
</tbody>
</table>
List of Figures
Figure 1: Lane Cove monitoring network ... 8
Figure 2: CO exposure and single point 3 minutes rolling averages for October 2016 17
Figure 3: CO exposure and single point 15 minutes rolling averages for October 2016 17
Figure 4: CO exposure and single point 30 minutes rolling averages for October 2016 18
Figure 5: CO exposure and single point 3 minutes rolling averages from August 2016 to October 2016 (3 monthly trend) ... 18
Figure 6: CO exposure and single point 15 minutes rolling averages from August 2016 to October 2016 (3 monthly trend) ... 19
Figure 7: CO exposure and single point 30 minutes rolling averages from August 2016 to October 2016 (3 monthly trend) ... 19

List of Tables
Table 1: Locations and parameters for In-tunnel open path type air quality monitoring 7
Table 2: Parameters measured at the Lane Cove monitoring network ... 9
Table 3: Methods .. 10
Table 4: Station/Network Air Quality Goals .. 12
Table 5: Units and Uncertainties ... 13
Table 6: Monthly Data Capture for Lane Cove Tunnel & Military Road E-Ramp monitors for October 2016 .. 15
Table 7: Exceedences Recorded for October 2016 .. 16
Executive Summary

The Lane Cove Tunnel is located in Sydney, Australia and is a 3.6 km twin tunnel motorway under Epping Road that links the M2 Motorway at North Ryde with the Gore Hill Freeway at Artarmon. Ecotech Pty Ltd is contracted by Tollaust Pty Ltd to undertake reporting services for the air quality monitoring system inside the tunnel which ensures that the carbon monoxide (CO) levels inside the Tunnel are always kept to within levels and limits stipulated by the Ministers Conditions of Approval (MCoA) for the Lane Cove Tunnel.

Continuous measurements of CO inside the tunnel are recorded, validated and reported to Tollaust Pty Ltd on a monthly basis.

Maintenance and calibrations are performed by a third party contractor.

This report presents validated data for the month of October 2016.

During the reporting period of October 2016, there were no observed exceedences of CO limits stipulated by the Department of Planning inside the tunnel.
1.0 Introduction
Ecotech is an independent company contracted by Tollaust Pty Ltd to undertake in tunnel air quality reporting at the Lane Cove Tunnel.

This report presents the validated data for October 2016.

- Describes air quality measurements;
- Reports any readings above the LCT limits;
- Compares monitoring results;
- Has been quality assured;

2.0 Monitoring and Data Collection

2.1. Siting Details

The CO In tunnel monitoring network consists of

- Twenty eight separate CO monitors attached to the walls and portals of both eastbound and westbound tunnels
Table 1: Locations and parameters for In-tunnel open path type air quality monitoring

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>Parameters Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>A</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
</tr>
<tr>
<td>F</td>
<td>x</td>
</tr>
<tr>
<td>G</td>
<td>x</td>
</tr>
<tr>
<td>H</td>
<td>x</td>
</tr>
<tr>
<td>I</td>
<td>x</td>
</tr>
<tr>
<td>J</td>
<td>x</td>
</tr>
<tr>
<td>M</td>
<td>x</td>
</tr>
<tr>
<td>N</td>
<td>x</td>
</tr>
<tr>
<td>Q</td>
<td>x</td>
</tr>
<tr>
<td>R</td>
<td>x</td>
</tr>
<tr>
<td>S</td>
<td>x</td>
</tr>
<tr>
<td>T</td>
<td>x</td>
</tr>
<tr>
<td>U</td>
<td>x</td>
</tr>
<tr>
<td>V</td>
<td>x</td>
</tr>
<tr>
<td>W</td>
<td>x</td>
</tr>
<tr>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Y</td>
<td>x</td>
</tr>
<tr>
<td>Z</td>
<td>x</td>
</tr>
<tr>
<td>AA</td>
<td>x</td>
</tr>
<tr>
<td>AB</td>
<td>x</td>
</tr>
<tr>
<td>AC</td>
<td>x</td>
</tr>
<tr>
<td>AG</td>
<td>x</td>
</tr>
<tr>
<td>AH</td>
<td>x</td>
</tr>
<tr>
<td>AI</td>
<td>x</td>
</tr>
<tr>
<td>AJ</td>
<td>x</td>
</tr>
<tr>
<td>AK</td>
<td>x</td>
</tr>
<tr>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>28</td>
</tr>
</tbody>
</table>

Non-highlighted rows – tunnel wall monitors; light grey highlighted rows – portal located monitors; dark grey highlighted rows – in ventilation stack monitors
Figure 1: Lane Cove monitoring network
2.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at the monitoring network. Appendix 1 defines any abbreviated parameter names used throughout the report.

Table 2: Parameters measured at the Lane Cove monitoring network

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Instrument and Measurement Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>CODEL TunnelCraft III AQM – Infrared Gas Cell Correlation.</td>
</tr>
</tbody>
</table>
2.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 2.3.1.

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Data Collection Methods Used</th>
<th>Description of Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Codel Tunnel Master Open Path - infrared</td>
<td>This method involves projecting an infrared beam across a 3 metre section of the tunnel into a reflector and the reflected light is received by a transceiver which measures the specific absorption</td>
</tr>
</tbody>
</table>

Carbon monoxide (CO) levels are measured inside the tunnel using a network of 28 separate CO monitors attached to the walls of both eastbound and westbound tunnels. The monitors measure CO using an analytical method known as non-dispersive infra-red absorption with gas filter correlation. An infra-red beam is projected across a 3 metre section of the tunnel and the amount of infra-red light absorbed by CO molecules in the path of the beam is measured. The quantity of infra-red light absorbed is proportional to the concentration of CO in the path of the beam. The monitors used were specially designed for use in road tunnels where access for routine essential maintenance is restricted by the need to minimise traffic disruption. Similar monitors are widely used in other road tunnels in Australia and worldwide.

The CO method of analysis is similar to the standard method AM-6 outlined in “NSW EPA 2001, Approved Methods for Sampling and Analysis of Pollutants in New South Wales.” However the method differs from the standard principally by the use of the open beam type instrument as described above in place of a closed analytical cell and sample delivery pump as typically used in ambient air monitoring stations. This deviation from the standard method has been approved by the Department of Planning on the advice of an independent consultant with specialist expertise in the field of air quality monitoring.

2.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Lane Cove Tunnel & Military Road E-Ramp stations according to the methods detailed in Table 3 above.

2.3.2. Data Acquisition

Data acquisition is performed using the LCT-MRE Pty Ltd hardware and software and is supplied to ecotech on a weekly basis and stored at Ecotech’s Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 1 minute intervals.
2.3.3. Data Validation

Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Table.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated one minute data.

Validation is limited by the information provided by Tollaust. Calibration and maintenance records are not provided so only provisional validation of the available data is possible.

2.3.4. Reporting

The reported data is in a Microsoft Excel format file named “Data LCT CO In Tunnel October16 Validated.xls” included as an appendix to this report.

The Excel file(s) consists of 3 Excel worksheets:

1. Cover
2. Max Single Point 3, 15 and 30 m
3. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the one minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00am is for the data collected from 1:00am to 2:00am. One hour averages are calculated based on a clock hour.
3.0 Air Quality Goals

The air quality goals for pollutants monitored at the Lane Cove Tunnel & Military Road E-Ramp monitors are based on the Ministers Conditions of Approval (MCoA) for the Lane Cove Tunnel. The air quality goals are shown in Table 4 below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time Period</th>
<th>Exceedence Level</th>
<th>Units</th>
<th>Applicable MCoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>30 minutes rolling averages</td>
<td>50</td>
<td>ppm</td>
<td>MCoA 160</td>
</tr>
<tr>
<td></td>
<td>15 minutes rolling averages</td>
<td>87</td>
<td>ppm</td>
<td>MCoA 160</td>
</tr>
<tr>
<td></td>
<td>3 minutes rolling averages</td>
<td>200</td>
<td>ppm</td>
<td>MCoA 161</td>
</tr>
</tbody>
</table>
4.0 Calibrations and Maintenance

4.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer’s tolerance limits of the equipment’s parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 5: Units and Uncertainties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Resolution</th>
<th>Uncertainty</th>
<th>Measurement Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>ppm</td>
<td>0.1 ppm</td>
<td>± 1.0 ppm or 2% of span</td>
<td>0 ppm to 100 ppm</td>
</tr>
</tbody>
</table>
5.0 Results

5.1 Data Capture

Data capture is based on 1 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

\[\text{Data capture} = \frac{\text{Reported air quality data}}{\text{Total data}} \times 100\% \]

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.

- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 6 below displays data capture statistics for October 2016.

Details of all invalid or missing data affecting data capture are included in the Valid Data Exception Table, see attached Excel file.
Table 6: Monthly Data Capture for Lane Cove Tunnel & Military Road E-Ramp monitors for October 2016

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>Data Capture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO101</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO102</td>
<td>90.0</td>
</tr>
<tr>
<td>ACO103</td>
<td>95.4</td>
</tr>
<tr>
<td>ACO104</td>
<td>96.2</td>
</tr>
<tr>
<td>ACO401</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO501</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO502</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO503</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO504</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO505</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO506</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO507</td>
<td>100.0</td>
</tr>
<tr>
<td>ACO508</td>
<td>99.8</td>
</tr>
<tr>
<td>AQS101</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS102</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS103</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS104</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS105</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS106</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS107</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS401</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS402</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS403</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS501</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS502</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS503</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS504</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS505</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS506</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS507</td>
<td>100.0</td>
</tr>
<tr>
<td>AQS508</td>
<td>99.9</td>
</tr>
<tr>
<td>AQS801</td>
<td>100.0</td>
</tr>
</tbody>
</table>
5.2. **Air Quality Summary**

Exceedences of the In Tunnel CO levels observed during the reporting period (if any) are recorded in the table below:

Table 7: Exceedences Recorded for October 2016

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time Period</th>
<th>Value of Exceedence</th>
<th>Date of Exceedence</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>3 minutes rolling averages</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15 minutes rolling averages</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30 minutes rolling averages</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.3. **Graphic Representations**

Validated 1 minute data for CO were used to construct the following monthly graphic representations.

Figure 2: CO exposure and single point 3 minutes rolling averages for October 2016

Figure 3: CO exposure and single point 15 minutes rolling averages for October 2016
Figure 4: CO exposure and single point 30 minutes rolling averages for October 2016

Figure 5: CO exposure and single point 3 minutes rolling averages from August 2016 to October 2016 (3 monthly trend)
Figure 6: CO exposure and single point 15 minutes rolling averages from August 2016 to October 2016 (3 monthly trend)

Figure 7: CO exposure and single point 30 minutes rolling averages from August 2016 to October 2016 (3 monthly trend)
Report Summary

- During the reporting period of October 2016, there were no observed exceedances of CO limits stipulated by the Department of Planning inside the tunnel.

END OF REPORT
Appendix 1 - Definitions & Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
</tbody>
</table>